graphical abstract for Optogenetic methods for the study of circadian rhythms
Optogenetic methods for the study of circadian rhythms

Jones JR, Tackenberg MC, McMahon DG. Methods in Molecular Biology (2020).

Abstract

A fundamental feature of circadian clock neurons across species is that they express circadian rhythms in spontaneous spike frequency. Spike frequency rhythms serve as both output timing signals of clock neurons as well as resonant elements of rhythms generation. Importantly, optogenetics, as applied to clock neurons, can enable investigation of the roles of clock neuron electrical activity in circadian timing. Here we describe protocols for using both in vitro and in vivo optogenetics directed to mammalian clock neurons in the suprachiasmatic nucleus to study circadian physiology and behavior. Optogenetic stimulation via channelrhodopsin, or inhibition via halorhodopsin, allows for the precise manipulation of neuronal firing rates across the SCN, and within specific neuronal subpopulations thereof, and can be combined with actigraphy and gene expression analysis.